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Background

• Key components for VQA
1. Feature representation (feature)

2. Multi-modal feature fusion (model)

3. Answer Prediction (loss)



Previous SOTA approaches

• Feature representation
• LSTM (concat with 300D GloVe feature) for questions
• bottom-up attention visual features extracted from Faster R-CNN

• Multi-modal feature fusion
• Attention modeling: visual attention, question-attention, co-attention
• Fusion: Concat, MCB, MLB, MUTAN, MFB, MFH

• Answering modeling
• Answer sampling+softmax, Cross-entropy, multi-label KLD
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• Answering modeling
• Answer sampling+softmax, Cross-entropy, multi-label KLD

2.5% improvement over ResNet-152 res5c features

0.5% improvement over only visual attention

1.6% improvement over MCB w/o attention

0.3% improvement over AS+softmax

0.8% improvement over LSTM w/o GloVe



Our reference model

• 1 layer LSTM(w/ GloVE) + Bottom-up attention feature (K=[10,100]) + MFH-CoAtt (# Q. 
glimpses=2, # I. glimpses=2) + KLD

• VQA-2.0, train on <train+val> , test on <test-dev>

• Overall: 68.76, Y/N: 84.27, Num: 49.56, Other: 59.89
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Yu et al., Beyond Bilinear: Generalized Multi-modal Factorized High-order Pooling for Visual Question Answering,
IEEETNNLS10.1109/TNNLS.2018.2817340(https://github.com/yuzcccc/vqa-mfb )

https://github.com/yuzcccc/vqa-mfb


Improvement

• Inspiration: 
• The representation capacity of visual features is the bottleneck for VQA
• Current Bottom-up attention features (Faster R-CNN with ResNet-101) is 

good, but can be better



Improvement

• Inspiration: 
• The representation capacity of visual features is the bottleneck for VQA
• Current Bottom-up attention features (Faster R-CNN with ResNet-101) is 

good, but can be better

• Our initial solution
• Replace Faster R-CNN (w/ ResNet-101) with a better model, e.g., FPN (w/ 

ResNet-152) 
• Migrate the project from Caffe to Detectron, and train the FPN model 

(ResNet-152 model) on Visual Genome.
• We obtain the new 1024-D bottom-up features. However, the 

performance is not as competitive as the original 2048-D features L



Mixture of Detectors (MoD) features

• Combine the bottom-up attention features from multiple object 
detectors
• Can not directly combine the two features w/o alignment, as the 

predicted bboxes of detectors are different. 

Detector #1

Detector #2



Mixture of Detectors (MoD) features

• We use the predicted bboxes of one model and extract bottom-
up features from each detector using a Fast-R-CNN like strategy

• The extracted features are aligned and we simply concat them to 
obtain the MoD features   

Detector #1

Feature extraction with 
predefined bboxes

Detector #1

Detector #2

Predicted bboxes MoD features



Implementation Details

• Two object detectors trained on Visual Genome with different 
backbone models
• Detector #1: the original bottom-up model, i.e., Faster-RCNN (ResNet-101), 

2048-D output feature for each bbox
• Detector #2: FPN (ResNet-152 pre-trained on ImageNet-5k) , 1024-D output 

feature for each bbox
• MOD feature: 2048+1024=3072-D

• Two strategies in bboxes generation
• Dynamic K range from 10~100, K is the number of predicted bboxes*

• Fix K=100

* https://github.com/peteanderson80/bottom-up-attention



• Trained on <train+val>, tested on <test-dev>

Experimental Results (single model)

Models Overall (%) Y/N (%) Num (%) Others (%)

Reference model 
(K=[10,100])

68.76 84.27 49.56 59.89

MoD(K=[10,100]) 69.47(+0.71) 85.35(+1.08) 49.85(+0.29) 60.39(+0.50)

MoD(K=100) 69.82 (+1.06) 85.86(+1.59) 49.37 (-0.19) 60.79(+0.90)



• Trained on <train+val>, tested on <test-dev>

• MoD brings 0.71% improvement over the reference model with the 
same bboxes

• Using fix K=100 bring about 0.35% improvement over K=[10,100] for 
MoD features, but performance for <Num> type is even lower than 
the reference model
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Experimental Results (ensemble)
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Submitted Final Results (12 models)

Test-dev
All: 71.75; 
Y/N: 87.32; Num: 52.15; Other:62.93

Test-std
All: 72.09
Y/N: 87.61; Num: 51.92; Other:63.19

Test-challenge
All: 71.91
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Submitted Final Results (12 models)

Test-dev
All: 71.75;
Y/N: 87.32; Num: 52.15; Other:62.93

Test-std
All: 72.09
Y/N: 87.61; Num: 51.92; Other:63.19

Test-challenge
All: 71.91

Introducing 4 diverse models with 
MoD(K=[10,100]) obtain 
additional 0.7% improvement



Visualizations

• MoD (K=100) vs. MoD (K=[10, 100]) on <Others>
• Larger K tends to discover more details of the image, which makes its 

performances on <Y/N> and <Others> better

Q: What side of the street 
are cars parked on?

attention map for MoD (K=100) 

attention map for MoD (K=[10, 100]) 

A: both √

A: right ×



Visualizations

• MoD (K=100) vs. MoD (K=[10, 100]) on <Y/N>

Q: Are the zebras in the wild?

attention map for MoD (K=100) 

attention map for MoD (K=[10, 100]) 

A: No×

A: Yes√

There are fence and 
wood pile here



Visualizations

• MoD (K=100) vs. MoD (K=[10, 100]) on <Num> 
• Larger K leads to more redundant bboxes for one object, which makes it 

harder to learn correct visual attention 

A: 4 √

attention map for MoD (K=100) 

attention map for MoD (K=[10, 100]) 

Q: How many sandwiches can you see?

A: 6 ×



Take-away

• The capability of visual features are still the core for VQA (and
other related tasks, e.g., visual grounding).

• Using Mixture of Detectors (MoD) features can still improve the
VQA performance even with a strong reference model

• Fix K=100 is better than dynamic K=[10,100] on overall accuracy, 
but they both have advantages on some aspects over each other

• Ensemble of diverse models are important to further boost the
performance



Q&A

• Special thanks to:
• VQA Challenge organizers
• Peter(@peteranderson80) to release the bottom-up-attention codes and 

models
• FAIR for releasing the Detectron project

• Our papers and codes
• Yu et al., Multi-modal Factorized Bilinear Pooling with Co-attention 

Learning for Visual Question Answering, ICCV 2017 
• Yu et al., Beyond Bilinear: Generalized Multi-modal Factorized High-

order Pooling for Visual Question Answering, IEEE TNNLS
10.1109/TNNLS.2018.2817340

• https://github.com/yuzcccc/vqa-mfb

https://github.com/yuzcccc/vqa-mfb
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